

QUESTION PAPER WITH SOLUTION

MATHEMATICS _ 4 Sep. _ SHIFT - 2

H.O.: 394, Rajeev Gandhi Nagar, Kota www.motion.ac.in |⊠: info@motion.ac.in

MOTION JEE MAIN 2020

ANSWER KEY

हमारा विश्वास... हर एक विद्यार्थी है खास

Suppose the vectors x_1 , x_2 and x_3 are the solutions of the system of linear equations, Ax=b when the vector b on the right side is equal to b_1 , b_2 and b_3 respectively. if **Q.1**

$$x_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, x_2 = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}, x_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, b_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, b_2 = \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} \text{ and } b_3 = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}, \text{ then the determinant of A is equal to } b_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, b_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

- (1)2
- (2) $\frac{1}{2}$ (3) $\frac{3}{2}$
- (4) 4

Sol. (1)

$$A = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_7 & a_8 & a_9 \end{bmatrix}_{3\times 3}$$

$$a_1 + a_2 + a_3 = 1$$
 $2a_2 + a_3 = 0$

$$a_4 + a_5 + a_6 = 0$$
 $2a_5 + a_6 = 2$

$$a_7 + a_8 + a_9 = 0$$
 $2a_8 + a_9 = 0$

$$a_3 = 0, a_6 = 0, a_9 = 2$$

$$\therefore a_8 = -1, a_5 = 1, \quad a_2 = 0 \implies a_1 = \phi, a_4 = -1, \quad a_7 = -1$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & -1 & 2 \end{bmatrix}$$

$$|A| = 2(1) = 2$$

If a and b are real numbers such that $(2+\alpha)^4=a+b\alpha$, where $\alpha=\frac{-1+i\sqrt{3}}{2}$ then a+b is **Q.2**

equal to:

- (1)33
- (2)57
- (3)9
- (4)24

Sol.

$$(2+\alpha)^4 = a + b\alpha$$

$$\left(2 + \frac{\sqrt{3}i - 1}{2}\right)^4 = a + b\alpha$$

$$\left(\frac{3+\sqrt{3}i}{2}\right)^4 = 9\left(\frac{\sqrt{3}}{2} + \frac{i}{2}\right)^4$$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

 Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises

Motion[®]

$$9\left\{e^{i\pi/6}\right\}^4 = 9e^{i2\pi/3} = 9\left(\frac{-1}{2} + \frac{\sqrt{3}i}{2}\right) = \frac{-9}{2} + \frac{9\sqrt{3}}{2}i$$

$$-\frac{9}{2} + \frac{9\sqrt{3}}{2}i = a + b\left(\frac{-1}{2} + \frac{i\sqrt{3}}{2}\right)$$

$$=a-\frac{b}{2}+\frac{bi\sqrt{3}}{2}$$

$$\therefore \frac{b\sqrt{3}}{2} = \frac{9\sqrt{3}}{2} \Rightarrow b = 9$$

$$a = 0 : a + b = 9$$

Q.3 The distance of the point (1, -2, 3) from the plane x-y+z=5 measured parallel to the line $\frac{x}{2} = \frac{y}{3} = \frac{z}{-6}$

(1)
$$\frac{1}{7}$$

(3)
$$\frac{7}{5}$$

Sol. (4

Equation of line through (1,-2,3) whose dr's are (2,3,-6)

$$\frac{x-1}{2} = \frac{y+2}{3} = \frac{z-3}{-6} = \lambda$$

any point on line $(2\lambda + 1, 3\lambda - 2, -6\lambda + 3)$

put in
$$(x - y + z = 5)$$

$$2\lambda + 1 - 3\lambda + 2 - 6\lambda + 3 = 5$$

$$-7\lambda = -1$$

$$\lambda = \frac{1}{7}$$

distance =
$$\sqrt{(2\lambda)^2 + (3\lambda)^2 + (6\lambda)^2}$$

$$\sqrt{4\lambda^2 + 9\lambda^2 + 36\lambda^2} = 7\lambda = 1$$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

Doubt Support ◆ Advanced Level Test Access
 Live Test Paper Discussion ◆ Final Revision Exercises

Let $f:(0,\infty)\to(0,\infty)$ be a differentiable function such that f(1)=e and $\lim_{t\to x}\frac{t^2f^2(x)-x^2f^2(t)}{t-x}=0$. **Q.4**

If f(x)=1, then x is equal to:

- (1)e
- (2) 2e
- (3) $\frac{1}{e}$
- (4) $\frac{1}{2e}$

Sol. (3)

$$f(1) = e$$

$$\lim_{t \to x} \frac{t^2 f^2(x) - x^2 f^2(t)}{t - x}$$

L' Hospital

$$\lim_{t \to x} \left(2tf^{2}(x) - 2x^{2}f(t) \cdot f'(t) \right)$$

$$\Rightarrow 2xf^2(x) - 2x^2f(x) \cdot f'(x) = 0$$

$$2xf(x)\big\{f(x)-xf'(x)\big\}=0$$

$$=) \quad \frac{f'(x)}{f(x)} = \frac{1}{x}$$

$$\ln f(x) = \ln x + \ln c$$

$$f(x) = cx$$

if
$$x = 1$$
, $e = c$

$$y = ex$$

$$\therefore \text{ if } f(x) = 1 \implies x = \frac{1}{e}$$

Q.5 Contrapositive of the statement:

'If a function f is differentiable at a, then it is also continuous at a', is:

- (1) If a function f is not continuous at a, then it is not differentiable at a.
- (2) If a function f is continuous at a, then it is differentiable at a.
- (3) If a function f is continuous at a, then it is not differentiable at a.
- (4) If a function f is not continuous at a, then it is differentiable at a.
- Sol. (1)

Contrapositive of $P \rightarrow q = \sim q \rightarrow \sim p$

- The minimum value of $2^{sinx} + 2^{cosx}$ is: **Q.6**
 - (1) $2^{1-\sqrt{2}}$
- (2) $2^{1-\frac{1}{\sqrt{2}}}$
- (3) $2^{-1+\sqrt{2}}$
- (4) $2^{-1+\frac{1}{\sqrt{2}}}$

Sol.

$$y = 2^{\sin x} + 2^{\cos x}$$

by $Am \ge GM$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

 Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises

$$\frac{2^{sin\,x} + 2^{cos\,x}}{2} \geq \sqrt{2^{sin\,x + cos\,x}}$$

$$2^{sinx} + 2^{cosx} \ge 2^{1.2} \frac{sin x + cos x}{2}$$

$$2^{\text{sinx}} + 2^{\text{cosx}} \geq 2^{\frac{2 + \sin x + \cos x}{2}} \ \ \therefore \ \left(2^{\text{Sinx}} + 2^{\text{cosx}}\right)_{\text{min}} = \ 2^{\frac{2 - \sqrt{2}}{2}} = \ 2^{\frac{-1}{\sqrt{2}} + 1}$$

Q.7 If the perpendicular bisector of the line segment joining the points P(1,4) and Q(k, 3) has y-intercept equal to -4, then a value of k is:

$$(1) - 2$$

(2)
$$\sqrt{15}$$

(3)
$$\sqrt{14}$$

$$(4) - 4$$

Sol. (4

$$m_{PQ} = \frac{4-3}{1-k} \Longrightarrow m_{\perp} = k-1$$

mid point of
$$PQ = \left(\frac{k+1}{2}, \frac{7}{2}\right)$$

equation of perpendicular bisector

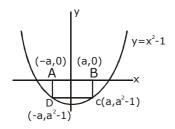
$$y - \frac{7}{2} = (k-1)\left(x - \frac{k+1}{2}\right)$$

for y intercept put x = 0

$$y = \frac{7}{2} - \left(\frac{k^2 - 1}{2}\right) = -4$$

$$\frac{k^2 - 1}{2} = \frac{15}{2} \implies k = \pm 4$$

Q.8 The area (in sq. units) of the largest rectangle ABCD whose vertices A and B lie on the x-axis and vertices C and D lie on the parabola, $y=x^2-1$ below the x-axis, is:


(1)
$$\frac{2}{3\sqrt{3}}$$

(2)
$$\frac{4}{3}$$

(3)
$$\frac{1}{3\sqrt{3}}$$

(4)
$$\frac{4}{3\sqrt{3}}$$

Sol. (4

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

Area =
$$2a(a^2-1)$$

 $A = 2a^3 - 2a$

$$\frac{dA}{da} = 6a^2 - 2 = 0$$

$$a = \pm 1\sqrt{3}$$

$$A_{\text{max}} = \frac{-2}{3\sqrt{3}} + \frac{2}{\sqrt{3}} = \frac{-2+6}{3\sqrt{3}} = \frac{4}{3\sqrt{3}}$$

- The integral $\int_{\pi/6}^{\pi/3} \tan^3 x \cdot \sin^2 3x (2 \sec^2 x \cdot \sin^2 3x + 3 \tan x \cdot \sin 6x) dx$ is equal to: 0.9

 - (1) $\frac{9}{2}$ (2) $-\frac{1}{18}$ (3) $-\frac{1}{9}$
- (4) $\frac{7}{18}$

Sol.

$$I = \int_{\pi/6}^{\pi/3} 2 \cdot \tan^3 x \sec^2 x \sin^4 3x + 3\tan^4 x \sin^2 3x. \ 2\sin 3x \cos 3x \ dx$$

$$= \frac{1}{2} \int_{\pi/6}^{\pi/3} 4 \tan^3 x \sec^2 x \sin^4 3x + 3.4 \tan^4 x \sin^3 3x \cos 3x dx$$

$$= \frac{1}{2} \int_{\pi/6}^{\pi/3} \frac{d}{dx} \left(\tan^4 x \sin^4 3x \right) dx$$

$$= \frac{1}{2} \left[\tan^4 x \sin^4 3x \right]_{\pi/6}^{\pi/3}$$

$$=\frac{1}{2}\left[9.(0)-\frac{1}{3}.\frac{1}{3}(1)\right]=-\frac{1}{18}$$

Q.10 If the system of equations

x+y+z=2

2x+4y-z=6

 $3x+2y+\lambda z=\mu$

has infinitely many solutions, then

(1)
$$\lambda - 2\mu = -3$$

(2)
$$2\lambda + \mu = 14$$

(1)
$$\lambda - 2\mu = -5$$
 (2) $2\lambda + \mu = 14$ (3) $\lambda + 2\mu = 14$ (4) $2\lambda - \mu = 5$

(4)
$$2\lambda - \mu = 5$$

Sol. (2)

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

 Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises

$$D = 0 \quad \begin{vmatrix} 1 & 1 & 1 \\ 2 & 4 & -1 \\ 3 & 2 & \lambda \end{vmatrix} = 0$$

$$(4\lambda + 2) - 1(2\lambda + 3) + 1(4 - 12) = 0$$

$$4\lambda + 2 - 2\lambda - 3 - 8 = 0$$

$$2\lambda = 9 \Longrightarrow \lambda = \frac{9}{2}$$

$$D_x = \begin{vmatrix} 2 & 1 & 1 \\ 6 & 4 & -1 \\ \mu & 2 & -9/2 \end{vmatrix} = 0$$

$$\Rightarrow \mu = 5$$

Now check option

$$2\lambda + \mu = 14$$

Q.11 In a game two players A and B take turns in throwing a pair of fair dice starting with player A and total of scores on the two dice, in each throw is noted. A wins the game if he throws total a of 6 before B throws a total of 7 and B wins the game if he throws a total of 7 before A throws a total of six. The game stops as soon as either of the players wins. The probability of A winning the game is:

(1)
$$\frac{5}{31}$$

(2)
$$\frac{31}{61}$$

(3)
$$\frac{30}{61}$$

(4)
$$\frac{5}{6}$$

sum total 7 = (1,6)(2,5)(3,4)(4,3)(5,2)(6,1)

$$P(sum) = \frac{6}{36}$$

sum total $6 \Rightarrow (1,5)(2,4)(3,3)(4,2)(5,1)$

P(sum 6) =
$$\frac{5}{36}$$

$$P(A_{win}) = P(6) + P(\overline{6}).P(\overline{7}).P(6) +$$

$$= \frac{5}{36} + \frac{31}{36} \times \frac{30}{36} \times \frac{5}{36} + \dots$$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

$$= \frac{\frac{5}{36}}{1 - \frac{31 \times 30}{36 \times 36}} \Rightarrow \frac{5 \times 36}{36 \times 36 - 31 \times 30} \Rightarrow \frac{5 \times 36}{1296 - 930} = \frac{5 \times 36}{366} \Rightarrow \frac{30}{61}$$

Q.12 If for some positive integer n, the coefficients of three consecutive terms in the binomial expansion of $(1+x)^{n+5}$ are in the ratio 5:10:14, then the largest coefficient in this expansion is :

(3) 462

Sol.

$$T_r: T_{r+1}: T_{r+2}$$

$${}^{n+5}C_{r-1}: {}^{n+5}C_r: {}^{n+5}C_{r+1} = 5:10:14$$

$$\frac{(n+5)!}{(r-1)! - (n+6-r)!}: \frac{(n+5)!}{r!(n+5-r)!} = \frac{5}{10}$$

$$\frac{r}{n+6-r} = \frac{1}{2}$$

$$\frac{r}{n+6-r} = \frac{1}{2} \qquad \frac{(r+1)!(n+4-r)!}{r!(n+5-r)!} = \frac{5}{7}$$

$$2r = n + 6 - r$$

$$3r = n + 6$$
 ...(1)
$$\frac{r+1}{n+5-r} = \frac{5}{7}$$
 $7r+7 = 5n + 25-5r$
 $12r = 5n + 18$...(2)

 $\therefore 4(n+6) = 5n + 18$ n = 6

∴ (1 + x) largest coeff = 11C₅ = 462

Q.13 The function
$$f(x) = \begin{cases} \frac{\pi}{4} + \tan^{-1} x, & |x| \le 1 \\ \frac{1}{2}(|x|-1), & |x| > 1 \end{cases}$$
 is :

- (1) both continuous and differentiable on $R-\{-1\}$
- (2) continuous on $R-\{-1\}$ and differentiable on $R-\{-1,1\}$
- (3) continuous on $R-\{1\}$ and differentiable on $R-\{-1,1\}$
- (4) both continuous and differentiable on R-{1}
- Sol. (3)

CRASH COURSE **FOR JEE ADVANCED 2020**

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

 Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises

MOTION

$$f(x) = \begin{cases} \frac{\pi}{4} + \tan^{-1} x & x \in [-1, 1] \\ \frac{1}{2}(x-1) & x > 1 \\ \frac{1}{2}(-x-1) & x < -1 \end{cases}$$

at x = 1

$$f(1) = \frac{\pi}{2} f(1^+) = 0$$

$$f(1^+) = 0$$

 \therefore discontinuous \Rightarrow non diff. at x = - 1

$$f(-1)=0$$

$$f(-1) = 0$$
 $f(-1^-) = \frac{1}{2}\{+1-1\} = 0$

cont. at x = -1

$$f'(x) = \begin{cases} \frac{1}{1+x^2} & x \in [-1,1] \\ \frac{1}{2} & x > 1 \\ -\frac{1}{2} & x < -1 \end{cases}$$

Q.14 The solution of the differential equation $\frac{dy}{dx} - \frac{y + 3x}{\log_2(y + 3x)} + 3 = 0$ is: (where c is a constant of integration)

(1)
$$x - \log_{2}(y + 3x) = C$$

(2)
$$x - \frac{1}{2} (\log_e(y + 3x))^2 = C$$

(3)
$$x-2\log_{2}(y+3x)=C$$

(4)
$$y + 3x - \frac{1}{2} (\log_e x)^2 = C$$

Sol.

$$\frac{dy}{dx} - \frac{y+3x}{\ln(y+3x)} + 3 = 0$$

Let
$$ln(y + 3x) = t$$

$$\frac{1}{v+3x} \cdot \left(\frac{dy}{dx} + 3\right) = \frac{dt}{dx}$$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

 Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises

$$\Rightarrow \left(\frac{dy}{dx} + 3\right) = \frac{y + 3x}{\ell n(y + 3x)}$$

$$\therefore (y+3x)\frac{dt}{dx} = \frac{y+3x}{t}$$

$$\Rightarrow$$
 tdt = dx

$$\frac{t^2}{2} = x + c$$

$$\frac{1}{2} \left(\ln \left(y + 3x \right) \right)^2 = x + c$$

Q.15 Let $\lambda \neq 0$ be in R. If α and β are the roots of the equation, $x^2 + x + 2\lambda = 0$ and α and γ are the roots of the equation, $\,_{3x^{^{2}}-10x\,+\,27\lambda\,=\,0}$, then $\,\frac{\beta\gamma}{\lambda}\,$ is equal to:

(3)18

Sol.

(3)
$$x^2 - x + 2\lambda = 0 (\alpha, \beta)$$

$$x^2 - x + 2\lambda = 0 (\alpha, \beta)$$

$$3x^2 - 10x + 27\lambda = 0(\alpha, \gamma)$$

$$3x^2 - 3x + 6\lambda = 0$$

$$\frac{-}{-7x+21\lambda} = 0$$

$$\therefore \alpha = 3\lambda$$
$$9\lambda^2 - 3\lambda + 2\lambda = 0$$

Put in equation

(2)9

$$9\lambda^2 - \lambda = 0 \implies \lambda = \frac{1}{9} \implies \alpha = \frac{1}{3}$$

$$\alpha.\beta = \frac{2}{9} \Rightarrow \beta = \frac{2}{3}$$

$$\alpha. \gamma = 1 \Rightarrow \gamma = 3$$

$$\therefore \frac{\beta r}{\lambda} \Rightarrow \frac{\frac{2}{3}.3}{\frac{1}{9}} = 18$$

CRASH COURSE

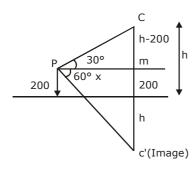
FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

(4)36

 Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises


MOTION

Q.16 The angle of elevation of a cloud C from a point P, 200 m above a still lake is 30°. If the angle of depression of the image of C in the lake from the point P is 60°, then PC (in m) is equal to :

(1)
$$200\sqrt{3}$$

(2)
$$400\sqrt{3}$$

Sol. (3)

$$\frac{h-200}{r} = \tan 30^{\circ}$$

$$\frac{h+200}{x} = \tan 60^{\circ}$$

(2)30

$$\frac{h + 200}{h - 200} = 3$$

$$h + 200 = 3h - 600$$

$$2h = 800$$

$$h = 400$$

$$\therefore \frac{h-200}{PC} = \sin 30^{\circ}$$

$$PC = 400 \text{ m}$$

Q.17 Let $\bigcup_{i=1}^{50} X_i = \bigcup_{i=1}^{n} Y_i = T$, where each X_i contains 10 elements and each Y_i contains 5 elements. If each element of the set T is an element of exactly 20 of sets X, 's and exactly 6 of sets Y, 's, then n is equal to:

(3)50

(1)15

Sol.

$$\frac{50\times10}{20} = \frac{n\times5}{6}$$

$$\frac{50}{2} \times \frac{6}{5} = n \implies n = 30$$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

(4)45

◆ Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

Q.18 Let x=4 be a directrix to an ellipse whose centre is at the origin and its eccentricity is $\frac{1}{2}$. If

 $P(1,\beta),\beta > 0$ is a point on this ellipse, then the equation of the normal to it at P is:

$$(1) 8x-2y=5$$

$$(2) 4x-2y=1$$

$$(3) 7x-4y=1$$

$$(4) 4x-3y=2$$

$$e = \frac{1}{2}$$

$$x = \frac{a}{e} = 4$$

$$\Rightarrow$$
 a = 2

$$e^2 = 1 - \frac{b^2}{a^2} \Rightarrow \frac{1}{4} = 1 - \frac{b^2}{4}$$

$$\frac{b^2}{4} = \frac{3}{4} \Rightarrow b^2 = 3$$

$$\therefore Ellipse \frac{x^2}{4} + \frac{y^2}{3} = 1$$

$$x = 1 ; \frac{1}{4} + \frac{\beta^2}{3} = 1$$

$$\frac{\beta^2}{3} = \frac{3}{4} \Rightarrow \beta = \frac{3}{2}$$

$$\Rightarrow P\left(1,\frac{3}{2}\right)$$

Equation of normal
$$\frac{a^2x}{x_1} - \frac{b^2y}{y_1} = a^2 - b^2$$

$$\frac{4x}{1} - \frac{3y}{\frac{3}{2}} = 4 - 3$$

$$4x - 2y = 1$$

- **Q.19** Let a_1 , a_2 , ..., a_n be a given A.P. whose common difference is an integer and $S_n = a_1 + a_2 + + a_n$. If $a_1 = 1$, $a_n = 300$ and $15 \le n \le 50$, then the ordered pair (S_{n-4}, a_{n-4}) is equal to:
- (1) (2480,248)
- (2) (2480,249)
- (3) (2490,249)
- (4) (2490,248)

Sol. 2

$$a_1 = 1$$
, $a_n = 300$, $15 \le n \le 50$
 $300 = 1 + (n - 1)d$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

◆ Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

Motion

$$(n-1) = \frac{299}{d}$$
d can 23 or 13
if n - 1 = 13
n = 14
reject
or d = 13
n - 1 = 23
n = 24
$$S_{20} = \frac{20}{2} \{2+19.13\}$$

$$a_{20} = 1 + 19.13$$

$$a_{20} = 248$$

$$a_{20} = 248$$

Q.20 The circle passing through the intersection of the circles, $x^2+y^2-6x=0$ and $x^2+y^2-4y=0$, having its centre on the line, 2x-3y+12=0, also passes through the point:

$$(2)(1,-3)$$

$$(3)(-3,6)$$

$$(4)(-3,1)$$

Sol. (3)

$$S_1 + \lambda(S_1 - S_2) = 0$$

$$x^2 + y^2 - 6x + \lambda(4y - 6x) = 0$$

$$x^2 + y^2 - 6x(1 + \lambda) + 4\lambda y = 0$$
Centre $(3(1 + \lambda), -2\lambda)$ put in $2x - 3y + 12 = 0$

$$6 + 6\lambda + 6\lambda + 12 = 0$$

$$12\lambda = -18$$

$$\lambda = -3/2$$

$$\therefore \text{ Circle is } x^2 + y^2 + 3x - 6y = 0$$
Check options

Q.21 Let $\{x\}$ and [x] denote the fractional part of x and the greatest integer $\le x$ respectively of a real number x. If $\int_0^n \{x\} dx$, $\int_0^n [x] dx$ and $10(n^2-n)$, $(n \in N, n > 1)$ are three consecutive terms of a G.P., then n is equal to_____

Sol. 21

$$\int_{0}^{n} \{x\} dx = n \int_{0}^{1} x dx = n \left(\frac{x^{2}}{2}\right) = \frac{n}{2}$$

$$\int_{0}^{n} [x] dx = \int_{0}^{1} 0 + \int_{1}^{2} 1 dx + \int_{2}^{3} 2 dx + \dots + \int_{n-1}^{n} (n-1) dx$$

$$= 1 + 2 + \dots + n - 1 \Rightarrow \frac{n(n-1)}{2}$$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

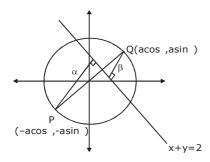
Doubt Support ◆ Advanced Level Test Access
 Live Test Paper Discussion ◆ Final Revision Exercises

$$= \frac{n}{2}, \frac{n(n-1)}{2}, 10(n^2 - n) \rightarrow G.P$$

$$= \frac{n^2(n-1)^2}{4} = \frac{n}{2}.10.n(n-1)$$
n - 1 = 20; n = 21

- **Q.22** A test consists of 6 multiple choice questions, each having 4 alternative answers of which only one is correct. The number of ways, in which a candidate answers all six questions such that exactly four of the answers are correct, is ______
- **Sol.** 135 ${}^{6}C_{4} \times 1 \times 3^{2} = 15 \times 9 = 135$
- **Q.23** If $\vec{a} = 2\hat{i} + \hat{j} + 2\hat{k}$, then the value of $\left|\hat{i} \times \left(\vec{a} \times \hat{i}\right)\right|^2 + \left|\hat{j} \times \left(\vec{a} \times \hat{j}\right)\right|^2 + \left|\hat{k} \times \left(\vec{a} \times \hat{k}\right)\right|^2$ is equal to_____
- Sol. 18

$$\left|\hat{i} \times \left(\vec{a} \times \hat{i}\right)\right|^2 = \left|\vec{a} - \left(a\hat{i}\right)\hat{i}\right|^2$$


$$= \left| \hat{j} + 2\hat{k} \right|^2 = 1 + 4 = 5$$

Similarly

$$\left|\hat{j} \times (\vec{a} \times \hat{j})\right|^2 = \left|2\hat{i} + 2\hat{k}\right|^2 = 4 + 4 = 8$$

$$\left|\hat{k} \times \left(\vec{a} \times \hat{k}\right)\right|^2 = \left|2\hat{i} + \hat{j}\right|^2 = 4 + 1 = 5$$

$$\Rightarrow 5 + 8 + 5 = 18$$

- Q.24 Let PQ be a diameter of the circle $x^2+y^2=9$. If α and β are the lengths of the perpendiculars from P and Q on the straight line, x+y=2 respectively, then the maximum value of $\alpha\beta$ is _____
- Sol. 7

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

Doubt Support ◆ Advanced Level Test Access
 Live Test Paper Discussion ◆ Final Revision Exercises

Motion

$$\alpha = \left| \frac{3\cos\theta + 3\sin\theta - 2}{\sqrt{2}} \right|$$

$$\beta = \left| \frac{+3\cos\theta + 3\sin\theta + 2}{\sqrt{2}} \right|$$

$$\alpha\beta = \left| \frac{\left(3\cos\theta + 3\sin\theta \right)^2 - 4}{2} \right| \Rightarrow \alpha\beta = \left| \frac{9 + 9\sin 2\theta - 4}{2} \right| \Rightarrow \alpha\beta = \left| \frac{5 + 9\sin 2\theta}{2} \right|$$

$$\alpha\beta_{\text{max}} = \frac{9+5}{2} = 7$$

Q.25 If the variance of the following frequency

distribution:

Sol.

$$6^2 = \frac{\sum f_i x_i^2}{\sum f_i} - \left(\frac{\sum f_i x_i}{\sum f_i}\right)^2$$

$$x_i$$
 f_i $x - \overline{x}$ $(x - \overline{x})^2$ $f_i(x - \overline{x})^2$

$$\overline{4+x}$$

$$\overline{x} = \frac{100 + 25x}{4 + x}$$

$$\overline{x} = 25$$

$$\therefore \frac{400}{4+x} = 50$$

$$x = 4$$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

◆ Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

Admission **OPEN**

जब इन्होने पूरा किया अपना सपना तो आप भी पा सकते है लक्ष्य अपना

JEE MAIN RESULT 2019

335

318 13th (2019)

Ritik Bansal

308

Shubham Kumar

Marks 300 13th (2019)

KOTA'S PIONEER IN DIGITAL EDUCATION 1,95,00,000+ viewers | 72,67,900+ viewing hours | 2,11,000+ Subscribers

SERVICES	SILVER	GOLD	PLATINUM
Classroom Lectures (VOD)			
Live interaction	NA		
Doubt Support	NA		
Academic & Technical Support	NA		
Complete access to all content	NA		
Classroom Study Material	NA		
Exercise Sheets	NA		
Recorded Video Solutions	NA		
Online Test Series	NA		
Revision Material	NA		
Upgrade to Regular Classroom program	Chargeable	Chargeable	Free
Physical Classroom	NA	NA	
Computer Based Test	NA	NA	
Student Performance Report	NA	NA	
Workshop & Camp	NA	NA	
Motion Solution Lab- Supervised	NA	NA	
learning and instant doubt clearance			
Personalised guidance and mentoring	NA	NA	

FEE STRUCTURE

CLASS	SILVER	GOLD	PLATINUM
7th/8th	FREE	₹ 12,000	₹ 35,000
9th/10th	FREE	₹ 15,000	₹ 40,000
11th	FREE	₹ 29,999	₹ 49,999
12th	FREE	₹ 39,999	₹ 54,999
12th Pass	FREE	₹ 39,999	₹ 59,999

- + Student Kit will be provided at extra cost to Platinum Student
- SILVER (Trial) Only valid 7 DAYS or First 10 Hour's Lectures.
- GOLD (Online) can be converted to regular classroom (Any MOTION Center) by paying difference amount after lockdown
- *** PLATINUM (Online + Regular) can be converted to regular classroom (Any MOTION Center) without any cost after lockdown

New Batch Starting from:

16 & 23 September 2020

Zero Cost EMI Available

